The density of imaginary multiplicative chaos is positive
Autor: | Aru, Juhan, Jego, Antoine, Junnila, Janne |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Consider a log-correlated Gaussian field $\Gamma$ and its associated imaginary multiplicative chaos $:e^{i \beta \Gamma}:$ where $\beta$ is a real parameter. In [AJJ22], we showed that for any nonzero test function $f$, the law of $\int f :e^{i \beta \Gamma}:$ possesses a smooth density with respect to Lebesgue measure on $\mathbb{C}$. In this note, we show that this density is strictly positive everywhere on $\mathbb{C}$. Our simple and direct strategy could be useful for studying other functionals on Gaussian spaces. Comment: 13 pages, to appear in Electronic Communications in Probability |
Databáze: | arXiv |
Externí odkaz: |