Autor: |
Deligne, Pierre, Raghuram, A. |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Given a pure motive $M$ over $\mathbb{Q}$ with a multilinear algebraic structure $\mathsf{s}$ on $M$, and given a representation $V$ of the group respecting $\mathsf{s}$, we describe a functorial transfer $M^V$. We formulate a criterion that guarantees when the two periods of $M^V$ are equal. This has an implication for the critical values of the $L$-function attached to $M^V.$ The criterion is explicated in a variety of examples such as: tensor product motives and Rankin-Selberg $L$-functions; orthogonal motives and the standard $L$-function for even orthogonal groups; twisted tensor motives and Asai $L$-functions. |
Databáze: |
arXiv |
Externí odkaz: |
|