Motives, Periods, and Functoriality

Autor: Deligne, Pierre, Raghuram, A.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Given a pure motive $M$ over $\mathbb{Q}$ with a multilinear algebraic structure $\mathsf{s}$ on $M$, and given a representation $V$ of the group respecting $\mathsf{s}$, we describe a functorial transfer $M^V$. We formulate a criterion that guarantees when the two periods of $M^V$ are equal. This has an implication for the critical values of the $L$-function attached to $M^V.$ The criterion is explicated in a variety of examples such as: tensor product motives and Rankin-Selberg $L$-functions; orthogonal motives and the standard $L$-function for even orthogonal groups; twisted tensor motives and Asai $L$-functions.
Databáze: arXiv