A remark on $\mathscr{C}^\infty$ definable equivalence
Autor: | Valette, Anna, Valette, Guillaume |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Annales Polonici Mathematici vol. 131.1 (2023), 79-84 |
Druh dokumentu: | Working Paper |
DOI: | 10.4064/ap230321-10-8 |
Popis: | We establish that if a submanifold $M$ of $\mathbb{R}^n$ is definable in some o-minimal structure then any definable submanifold $N\subset \mathbb{R}^n$ which is $\mathscr{C}^\infty$ diffeomorphic to $M$, with a diffeomorphism $h:N\to M$ that is sufficiently close to the identity, must be $\mathscr{C}^\infty$ definably diffeomorphic to $M$. The definable diffeomorphism between $N$ and $M$ is then provided by a tubular neighborhood of $M$. Comment: Final version |
Databáze: | arXiv |
Externí odkaz: |