A remark on $\mathscr{C}^\infty$ definable equivalence

Autor: Valette, Anna, Valette, Guillaume
Rok vydání: 2024
Předmět:
Zdroj: Annales Polonici Mathematici vol. 131.1 (2023), 79-84
Druh dokumentu: Working Paper
DOI: 10.4064/ap230321-10-8
Popis: We establish that if a submanifold $M$ of $\mathbb{R}^n$ is definable in some o-minimal structure then any definable submanifold $N\subset \mathbb{R}^n$ which is $\mathscr{C}^\infty$ diffeomorphic to $M$, with a diffeomorphism $h:N\to M$ that is sufficiently close to the identity, must be $\mathscr{C}^\infty$ definably diffeomorphic to $M$. The definable diffeomorphism between $N$ and $M$ is then provided by a tubular neighborhood of $M$.
Comment: Final version
Databáze: arXiv