On Hilbert's 16th Problem
Autor: | Andersen, Lars |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that to each real singularity $f: (\mathbb{R}^{n}, 0) \to (\mathbb{R}^k, 0)$ with $k\geq 2$ one can associate systems of differential equations $\mathfrak{g}^{k}_f$ which are pushforwards in the category of $\mathcal{D}$-modules over $\mathbb{R}^{k}$ of the sheaf of real analytic functions on the total space of the Milnor fibration. We then use this to study Hilbert's 16th problem on polynomial dynamical systems in the plane. |
Databáze: | arXiv |
Externí odkaz: |