On Hilbert's 16th Problem

Autor: Andersen, Lars
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that to each real singularity $f: (\mathbb{R}^{n}, 0) \to (\mathbb{R}^k, 0)$ with $k\geq 2$ one can associate systems of differential equations $\mathfrak{g}^{k}_f$ which are pushforwards in the category of $\mathcal{D}$-modules over $\mathbb{R}^{k}$ of the sheaf of real analytic functions on the total space of the Milnor fibration. We then use this to study Hilbert's 16th problem on polynomial dynamical systems in the plane.
Databáze: arXiv