Solutions to the discrete Pompeiu problem and to the finite Steinhaus tiling problem
Autor: | Kiss, Gergely, Laczkovich, Miklós |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $K$ be a nonempty finite subset of the Euclidean space $\mathbb{R}^k$ $(k\ge 2)$. We prove that if a function $f\colon \mathbb{R}^k\to \mathbb{C}$ is such that the sum of $f$ on every congruent copy of $K$ is zero, then $f$ vanishes everywhere. In fact, a stronger, weighted version is proved. As a corollary we find that every finite subset $K$ of $\mathbb{R}^k$ having at least two elements is a Jackson set; that is, no subset of $\mathbb{R}^k$ intersects every congruent copy of $K$ in exactly one point. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |