Dimensional reduction formulae for spectral traces and Casimir energies

Autor: Strohmaier, Alexander
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: This short letter considers the case of acoustic scattering by several obstacles in $\mathbb{R}^{d+r}$ for $r,d \geq 1$ of the form $\Omega \times \mathbb{R}^r$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^d$. As a main result a von-Neumann-trace formula for the relative trace is obtained in this setting. As a special case we obtain a dimensional reduction formula for the Casimir energy for the massive and massless scalar fields in this configuration $\Omega \times \mathbb{R}^r$ per unit volume in $\mathbb{R}^r$.
Comment: 8 pages, latex, minor typos fixed
Databáze: arXiv