Predicting Sustainable Development Goals Using Course Descriptions -- from LLMs to Conventional Foundation Models
Autor: | Kharlashkin, Lev, Macias, Melany, Huovinen, Leo, Hämäläinen, Mika |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Journal of Data Mining & Digital Humanities, NLP4DH (April 29, 2024) jdmdh:13127 |
Druh dokumentu: | Working Paper |
DOI: | 10.46298/jdmdh.13127 |
Popis: | We present our work on predicting United Nations sustainable development goals (SDG) for university courses. We use an LLM named PaLM 2 to generate training data given a noisy human-authored course description input as input. We use this data to train several different smaller language models to predict SDGs for university courses. This work contributes to better university level adaptation of SDGs. The best performing model in our experiments was BART with an F1-score of 0.786. Comment: 3 figures, 2 tables |
Databáze: | arXiv |
Externí odkaz: |