Characterization and enumeration on Lam\'e equations with finite monodromy

Autor: Chou, You-Cheng, Wang, Chin-Lung, Wu, Po-Sheng
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We give a complete characterization of the classical Lam\'e equations $y'' = (n(n + 1)\wp(z) + B)y$, $n \in \Bbb R$, $B \in \Bbb C$ on flat tori $E_\tau = \Bbb C/(\Bbb Z + \Bbb Z\,\tau)$ with finite monodromy groups $M$. Beuker--Waall had shown that such $n$ must lie in a finite number of arithmetic progressions $n_i + \Bbb N \subset \Bbb Q$ and they determined all corresponding $M$. By combining the theory of dessin d'enfants with the geometry of spherical tori, we prove the existence of $(B, \tau)$ for each such $n$ and provide a description of all such $(n, B, \tau, M)$. In particular, for a given $(n, M)$ with $n \not\in \tfrac{1}{2} + \Bbb Z$, we prove the finiteness of $(B, \tau)$ and derive an explicit counting formula of them. (The case $n \in \tfrac{1}{2} + \Bbb Z$ is a classical result due to Brioschi--Halphen--Crawford.) The main ingredients in this work are (1) the definition and classification of basic spherical triangles with finite monodromy and (2) the process of attaching cells corresponding to $n \mapsto n + 1$ which reduces the problem to the basic case.
Databáze: arXiv