Interacting electrons in a flat-band system within the Generalized Kadanoff-Baym Ansatz

Autor: Cosco, F., Tuovinen, R., Gullo, N. Lo
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1002/pssb.202300561
Popis: This work reports the study of the spectral properties of an open interacting system by solving the Generalized Kadanoff-Baym Ansatz (GKBA) master equation for the single-particle density matrix, namely the time-diagonal lesser Green function. To benchmark its validity, the solution obtained within the GKBA is compared with the solution of the Dyson equation at stationarity. In both approaches, the interaction is treated within the self-consistent second-order Born approximation, whereas the GKBA still retains the retarded propagator calculated at the Hartree-Fock and wide-band limit approximation level. The model chosen is that of two leads connected through a central correlated region where particles can interact and utilize the stationary particle current at the boundary of the junction as a probe of the spectral features of the system. The central region is chosen as the simplest model featuring a degenerate ground state with a flat band. The main result is that the solution of the GKBA master equation captures well the spectral feature of such system and specifically the transition from dispersionless to dispersive behavior of the flat-band as the interaction is increased. Therefore the GBKA solution retains the main spectral features of the self-energy used even when the propagator is at the Hartree-Fock level.
Comment: 5 Figures
Databáze: arXiv