The Kummer ratio of the relative class number for prime cyclotomic fields
Autor: | Kandhil, Neelam, Languasco, Alessandro, Moree, Pieter, Eddin, Sumaia Saad, Sedunova, Alisa |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jmaa.2024.128368 |
Popis: | Kummer's conjecture predicts the asymptotic growth of the relative class number of prime cyclotomic fields. We substantially improve the known bounds of Kummer's ratio under three scenarios: no Siegel zero, presence of Siegel zero and assuming the Riemann Hypothesis for the Dirichlet $L$-series attached to odd characters only. The numerical work in this paper extends and improves on our earlier preprint (arXiv:1908.01152) and demonstrates our theoretical results. Comment: 23 pages, 4 figures, 3 tables; to appear in Journal of Mathematical Analysis and Applications |
Databáze: | arXiv |
Externí odkaz: |