On the sequential topological complexity of group homomorphisms
Autor: | Kuanyshov, Nursultan |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We define and develop a homotopy invariant notion for the sequential topological complexity of a map $f:X\to Y,$ denoted $TC_{r}(f)$, that interacts with $TC_{r}(X)$ and $TC_{r}(Y)$ in the same way Jamie Scott's topological complexity map $TC(f)$ interacts with $TC(X)$ and $TC(Y).$ Furthermore, we apply $TC_{r}(f)$ to studying group homomorphisms $\phi: \Gamma\to \Lambda.$ In addition, we prove that the sequential topological complexity of any nonzero homomorphism of a torsion group cannot be finite. Also, we give the characterisation of cohomological dimension of group homomorphisms. Comment: 19 pages |
Databáze: | arXiv |
Externí odkaz: |