A Tale of Two Peas-In-A-Pod: The Kepler-323 and Kepler-104 Systems
Autor: | Thomas, C. Alexander, Weiss, Lauren M., Isaacson, Howard, Schlichting, Hilke E., Beard, Corey, Brinkman, Casey L., Chontos, Ashley, Dalba, Paul, Dai, Fei, Giacalone, Steven, Lubin, Jack, Van Zandt, Judah, Rice, Malena |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In order to understand the relationship between planet multiplicity, mass, and composition, we present newly measured masses of five planets in two planetary systems: Kepler-323 and Kepler-104. We used the HIRES instrument at the W.M. Keck Observatory to collect 79 new radial velocity measurements (RVs) for Kepler-323, which we combined with 48 literature RVs from TNG/HARPS-N. We also conducted a reanalysis of the Kepler-104 system, using 44 previously published RV measurements. Kepler-323 b and c have masses of $2.0^{+1.2}_{-1.1}$ M$_\oplus$ and 6.5$\pm1.6$ M$_\oplus$, respectively, whereas the three Kepler-104 planets are more massive (10.0$\pm2.8$ M$_\oplus$, $7.1^{+3.8}_{-3.5}$ M$_\oplus$, and $5.5^{+4.6}_{-3.5}$ M$_\oplus$ for planets b, c, and d, respectively). The Kepler-104 planets have densities consistent with rocky cores overlaid with gaseous envelopes ($4.1^{+1.2}_{-1.1}$ g/cc, $2.9^{+1.7}_{-1.5}$ g/cc, and $1.6^{+1.5}_{-1.1}$ g/cc respectively), whereas the Kepler-323 planets are consistent with having rocky compositions ($4.5^{+2.8}_{-2.4}$ g/cc and $9.9^{+2.7}_{-2.5}$ g/cc). The Kepler-104 system has among the lowest values for gap complexity ($\mathcal{C}$ = 0.004) and mass partitioning ($\mathcal{Q}$ = 0.03); whereas, the Kepler-323 planets have a mass partitioning similar to that of the Inner Solar System ($\mathcal{Q}$ = 0.28 and $\mathcal{Q}$ = 0.24, respectively). For both exoplanet systems, the uncertainty in the mass partitioning is affected equally by (1) individual mass errors of the planets and (2) the possible existence of undetected low-mass planets, meaning that both improved mass characterization and improved sensitivity to low-mass planets in these systems would better elucidate the mass distribution among the planets. Comment: Accepted for publication in Astronomical Journal |
Databáze: | arXiv |
Externí odkaz: |