Autor: |
Zhang, Mingtian, Lan, Shawn, Hayes, Peter, Barber, David |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Retrieval Augmented Generation (RAG) has emerged as an effective solution for mitigating hallucinations in Large Language Models (LLMs). The retrieval stage in RAG typically involves a pre-trained embedding model, which converts queries and passages into vectors to capture their semantics. However, a standard pre-trained embedding model may exhibit sub-optimal performance when applied to specific domain knowledge, necessitating fine-tuning. This paper addresses scenarios where the embeddings are only available from a black-box model. We introduce Model augmented fine-tuning (Mafin) -- a novel approach for fine-tuning a black-box embedding model by augmenting it with a trainable embedding model. Our results demonstrate that Mafin significantly enhances the performance of the black-box embeddings by only requiring the training of a small augmented model. We validate the effectiveness of our method on both labeled and unlabeled datasets, illustrating its broad applicability and efficiency. |
Databáze: |
arXiv |
Externí odkaz: |
|