Early feasibility of an embedded bi-directional brain-computer interface for ambulation

Autor: Lim, Jeffrey, Wang, Po T., Sohn, Wonjoon, Serrano-Amenos, Claudia, Ibrahim, Mina, Lin, Derrick, Thaploo, Shravan, Shaw, Susan J., Armacost, Michelle, Gong, Hui, Lee, Brian, Lee, Darrin, Andersen, Richard A., Heydari, Payam, Liu, Charles Y., Nenadic, Zoran, Do, An H.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Current treatments for paraplegia induced by spinal cord injury (SCI) are often limited by the severity of the injury. The accompanying loss of sensory and motor functions often results in reliance on wheelchairs, which in turn causes reduced quality of life and increased risk of co-morbidities. While brain-computer interfaces (BCIs) for ambulation have shown promise in restoring or replacing lower extremity motor functions, none so far have simultaneously implemented sensory feedback functions. Additionally, many existing BCIs for ambulation rely on bulky external hardware that make them ill-suited for non-research settings. Here, we present an embedded bi-directional BCI (BDBCI), that restores motor function by enabling neural control over a robotic gait exoskeleton (RGE) and delivers sensory feedback via direct cortical electrical stimulation (DCES) in response to RGE leg swing. A first demonstration with this system was performed with a single subject implanted with electrocorticography electrodes, achieving an average lag-optimized cross-correlation of 0.80$\pm$0.08 between cues and decoded states over 5 runs.
Comment: 5 pages, 6 figures, two tables, also submitted to IEEE EMBC 2024 conference
Databáze: arXiv