Spatial Variations of Dust Opacity and Grain Growth in Dark Clouds: L1689, L1709 and L1712

Autor: Li, Jun, Jiang, Biwei, Zhao, He, Chen, Xi, Yang, Yang
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The far-infrared (FIR) opacity of dust in dark clouds within the Ophiuchus molecular cloud is investigated through multi-wavelength infrared observations from UKIDSS, Spitzer and Herschel. Employing the infrared color excess technique with both near-infrared (NIR) and mid-infrared (MIR) photometric data, a high-resolution extinction map in the $K$ band ($A_K$) is constructed for three dark clouds: L1689, L1709, and L1712. The derived extinction map has a resolution of $1'$ and reaches a depth of $A_K\sim3$ mag. The FIR optical depths $\tau_{250}$ at a reference wavelength of $250\,\rm \mu m$ are obtained by fitting the Herschel PACS and SPIRE continuum data at 100, 160, 250, 350 and 500 $\rm \mu m$ using a modified blackbody model. The average dust opacity per unit gas mass at $250\rm \mu m$, $r\kappa_{250}$ is determined through a pixel-by-pixel correlation of $\tau_{250}$ with $A_K$, yielding a value of approximately $0.09\,\rm cm^2\,g^{-1}$, which is about 2-3 times higher than the typical value in the diffuse interstellar medium (ISM). Additionally, an independent analysis across 16 sub-regions within the Ophiuchus cloud indicates spatial variations in dust opacity, with values ranging from 0.07-0.12$\,\rm cm^2\,g^{-1}$. Although the observed trend of increasing dust opacity with higher extinction implies grain growth, our findings indicate that rapid grain growth clearly not yet occurred in the dark clouds studied in this work.
Comment: Accepted for publication in ApJ (16 pages, 8 figures, 3 tables)
Databáze: arXiv