Ext branching laws for the general linear group

Autor: Qadri, Mohammed Saad
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $F$ be a non-archimedean local field. Let $\pi_1$ and $\pi_2$ be irreducible Arthur type representations of $\mathrm{GL}_n(F)$ and $\mathrm{GL}_{n-1}(F)$ respectively. We study Ext branching laws when $\pi_1$ and $\pi_2$ are products of discrete series representations and their Aubert-Zelevinsky duals. We obtain an Ext analogue of the local non-tempered Gan-Gross-Prasad conjecture in this case.
Databáze: arXiv