Ext branching laws for the general linear group
Autor: | Qadri, Mohammed Saad |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $F$ be a non-archimedean local field. Let $\pi_1$ and $\pi_2$ be irreducible Arthur type representations of $\mathrm{GL}_n(F)$ and $\mathrm{GL}_{n-1}(F)$ respectively. We study Ext branching laws when $\pi_1$ and $\pi_2$ are products of discrete series representations and their Aubert-Zelevinsky duals. We obtain an Ext analogue of the local non-tempered Gan-Gross-Prasad conjecture in this case. |
Databáze: | arXiv |
Externí odkaz: |