Entanglement asymmetry in CFT and its relation to non-topological defects

Autor: Fossati, Michele, Ares, Filiberto, Dubail, Jerome, Calabrese, Pasquale
Rok vydání: 2024
Předmět:
Zdroj: JHEP 2024, 59 (2024)
Druh dokumentu: Working Paper
DOI: 10.1007/JHEP05(2024)059
Popis: The entanglement asymmetry is an information based observable that quantifies the degree of symmetry breaking in a region of an extended quantum system. We investigate this measure in the ground state of one dimensional critical systems described by a CFT. Employing the correspondence between global symmetries and defects, the analysis of the entanglement asymmetry can be formulated in terms of partition functions on Riemann surfaces with multiple non-topological defect lines inserted at their branch cuts. For large subsystems, these partition functions are determined by the scaling dimension of the defects. This leads to our first main observation: at criticality, the entanglement asymmetry acquires a subleading contribution scaling as $\log \ell / \ell$ for large subsystem length $\ell$. Then, as an illustrative example, we consider the XY spin chain, which has a critical line described by the massless Majorana fermion theory and explicitly breaks the $U(1)$ symmetry associated with rotations about the $z$-axis. In this situation the corresponding defect is marginal. Leveraging conformal invariance, we relate the scaling dimension of these defects to the ground state energy of the massless Majorana fermion on a circle with equally-spaced point defects. We exploit this mapping to derive our second main result: the exact expression for the scaling dimension associated with $n$ of defects of arbitrary strengths. Our result generalizes a known formula for the $n=1$ case derived in several previous works. We then use this exact scaling dimension to derive our third main result: the exact prefactor of the $\log \ell/\ell$ term in the asymmetry of the critical XY chain.
Comment: 37 pages, 7 figures
Databáze: arXiv