Ruling Out Low-rank Matrix Multiplication Tensor Decompositions with Symmetries via SAT

Autor: Yang, Jason
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We analyze rank decompositions of the $3\times 3$ matrix multiplication tensor over $\mathbb{Z}/2\mathbb{Z}$. We restrict our attention to decompositions of rank $\le 21$, as only those decompositions will yield an asymptotically faster algorithm for matrix multiplication than Strassen's algorithm. To reduce search space, we also require decompositions to have certain symmetries. Using Boolean SAT solvers, we show that under certain symmetries, such decompositions do not exist.
Comment: submitted to ISSAC 2024; 8 pages, 0 figures
Databáze: arXiv