On symmetries of spheres in univalent foundations
Autor: | Cagne, Pierre, Buchholtz, Ulrik, Kraus, Nicolai, Bezem, Marc |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Working in univalent foundations, we investigate the symmetries of spheres, i.e., the types of the form $\mathbb{S}^n = \mathbb{S}^n$. The case of the circle has a slick answer: the symmetries of the circle form two copies of the circle. For higher-dimensional spheres, the type of symmetries has again two connected components, namely the components of the maps of degree plus or minus one. Each of the two components has $\mathbb{Z}/2\mathbb{Z}$ as fundamental group. For the latter result, we develop an EHP long exact sequence. Comment: comments welcome |
Databáze: | arXiv |
Externí odkaz: |