On the discriminants of truncated logarithmic polynomials

Autor: Cullinan, John, Gajek-Leonard, Rylan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We provide evidence for a conjecture of Yamamura that the truncated logarithmic polynomials \[ F_n(x) = 1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n} \] have Galois group $S_n$ for all $n \geq 1$.
Comment: 9 pages. Submitted for publication
Databáze: arXiv