Growth of products of subsets in finite simple groups

Autor: Dona, Daniele, Maróti, Attila, Pyber, László
Rok vydání: 2024
Předmět:
Zdroj: Bull. Lond. Math. Soc., 56(8):2704--2710, 2024
Druh dokumentu: Working Paper
DOI: 10.1112/blms.13093
Popis: We prove that the product of a subset and a normal subset inside any finite simple non-abelian group $G$ grows rapidly. More precisely, if $A$ and $B$ are two subsets with $B$ normal and neither of them is too large inside $G$, then $|AB| \geq |A||B|^{1-\epsilon}$ where $\epsilon>0$ can be taken arbitrarily small. This is a somewhat surprising strengthening of a theorem of Liebeck, Schul, Shalev.
Comment: 7 pages
Databáze: arXiv