A finiteness principle for distance functions on Riemannian surfaces with H\'older continuous curvature
Autor: | Assouline, Rotem |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study distance functions from geodesics to points on Riemannian surfaces with H\"older continuous Gauss curvature, and prove a finiteness principle in the spirit of Whitney extension theory for such functions. Our result can be viewed as a finiteness principle for isometric embedding of a certain type of metric spaces into Riemannian surfaces, with control over the H\"older seminorm of the Gauss curvature. Comment: 38 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |