Differentially-Private Hierarchical Federated Learning

Autor: Lin, Frank Po-Chen, Brinton, Christopher
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: While federated learning (FL) eliminates the transmission of raw data over a network, it is still vulnerable to privacy breaches from the communicated model parameters. In this work, we propose \underline{H}ierarchical \underline{F}ederated Learning with \underline{H}ierarchical \underline{D}ifferential \underline{P}rivacy ({\tt H$^2$FDP}), a DP-enhanced FL methodology for jointly optimizing privacy and performance in hierarchical networks. Building upon recent proposals for Hierarchical Differential Privacy (HDP), one of the key concepts of {\tt H$^2$FDP} is adapting DP noise injection at different layers of an established FL hierarchy -- edge devices, edge servers, and cloud servers -- according to the trust models within particular subnetworks. We conduct a comprehensive analysis of the convergence behavior of {\tt H$^2$FDP}, revealing conditions on parameter tuning under which the training process converges sublinearly to a finite stationarity gap that depends on the network hierarchy, trust model, and target privacy level. Leveraging these relationships, we develop an adaptive control algorithm for {\tt H$^2$FDP} that tunes properties of local model training to minimize communication energy, latency, and the stationarity gap while striving to maintain a sub-linear convergence rate and meet desired privacy criteria. Subsequent numerical evaluations demonstrate that {\tt H$^2$FDP} obtains substantial improvements in these metrics over baselines for different privacy budgets, and validate the impact of different system configurations.
Databáze: arXiv