Popis: |
Constructing first principles models is a challenging task for nonlinear and complex systems such as a wastewater treatment unit. In recent years, data-driven models are widely used to overcome the complexity. However, they often suffer from issues such as missing, low quality or noisy data. Transfer learning is a solution for this issue where knowledge from another task is transferred to target one to increase the prediction performance. In this work, the objective is increasing the prediction performance of an industrial wastewater treatment plant by transferring the knowledge of (i) an open-source simulation model that captures the underlying physics of the process, albeit with dissimilarities to the target plant, (ii) another industrial plant characterized by noisy and limited data but located in the same refinery, and (iii) the model in (ii) and making the objective function of the training problem physics informed where the physics information derived from the open-source model in (ii). The results have shown that test and validation performance are improved up to 27% and 59%, respectively. |