Dimension-free estimates for low degree functions on the Hamming cube

Autor: Domelevo, Komla, Durcik, Polona, Fragkiadaki, Valentia, Klein, Ohad, Silva, Diogo Oliveira e, Slavíková, Lenka, Wróbel, Błażej
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The main result of this paper are dimension-free $L^p$ inequalities, $12,$ $\varepsilon>0,$ and $\theta=\theta(\varepsilon,p)\in (0,1)$ satisfying \[ \frac{1}{p}=\frac{\theta}{p+\varepsilon}+\frac{1-\theta}{2} \] we obtain, for any function $f:\{-1,1\}^n\to \mathbb{C}$ whose spectrum is bounded from above by $d,$ the Bernstein-Markov type inequalities \[\|\Delta^k f\|_{p} \le C(p,\varepsilon)^k \,d^k\, \|f\|_{2}^{1-\theta}\|f\|_{p+\varepsilon}^{\theta},\qquad k\in \mathbb{N}.\] Analogous inequalities are also proved for $p\in (1,2)$ with $p-\varepsilon$ replacing $p+\varepsilon.$ As a corollary, if $f$ is Boolean-valued or $f\colon \{-1,1\}^n\to \{-1,0,1\},$ we obtain the bounds \[\|\Delta^k f\|_{p} \le C(p)^k \,d^k\, \|f\|_p,\qquad k\in \mathbb{N}.\] At the endpoint $p=\infty$ we provide counterexamples for which a linear growth in $d$ does not suffice when $k=1$. We also obtain a counterpart of this result on tail spaces. Namely, for $p>2$ we prove that any function $f:\{-1,1\}^n\to \mathbb{C}$ whose spectrum is bounded from below by $d$ satisfies the upper bound on the decay of the heat semigroup $$ \|e^{-t\Delta}f\|_{p} \le \exp(-c(p,\varepsilon) td) \|f\|_{2}^{1-\theta}\|f\|_{p+\varepsilon}^{\theta},\qquad t>0,$$ and an analogous estimate for $p\in (1,2).$ The constants $c(p,\varepsilon)$ and $C(p,\varepsilon)$ depend only on $p$ and $\varepsilon$; crucially, they are independent of the dimension $n$.
Comment: 10 pages, incporporating suggestions from referees reports, accepted for publication in Studia Mathematica
Databáze: arXiv