Weak solutions to the Navier-Stokes equations for steady compressible non-Newtonian fluids

Autor: Burtea, Cosmin, Szlenk, Maja
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove the existence of weak solutions to steady, compressible non-Newtonian Navier-Stokes system on a bounded, two- or three-dimensional domain. Assuming the viscous stress tensor is monotone satisfying a power-law growth with power $r$ and the pressure is given by $\varrho^\gamma$, we construct a solution provided that $r>\frac{3d}{d+2}$ and $\gamma$ is sufficiently large, depending on the values of $r$. Additionally, we also show the existence for time-discretized model for Herschel-Bulkley fluids, where the viscosity has a singular part.
Databáze: arXiv