The Funk-Finsler structure on the unit disc in the hyperbolic plane

Autor: Kumar, Ashok, Shah, Hemangi Madhusudan, Tiwari, Bankteshwar
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we construct the Funk-Finsler structure in various models of the hyperbolic plane. In particular, in the unit disc of the Klein model, it turns out to be a Randers metric, which is a non-Berwald Douglas metric. Further, using Finsler isometries we obtain the Funk-Finsler structures in other models of the hyperbolic plane. Finally, we also investigate the geometry of this Funk-Finsler metric by explicitly computing the S-curvature, Riemann curvature, flag curvature, and Ricci curvature in the Klein unit disc.
Databáze: arXiv