Congruence properties modulo prime powers for a class of partition functions
Autor: | Boylan, Matthew, Swati |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $p$ be prime, and let $p_{[1,p]}$ denote the function whose generating function is $\prod (1-q^n)^{-1}(1 - q^{pn})^{-1}$. This function and its generalizations $p_{[c^{\ell}, d^m]}$ are the subject of study in several recent papers. Let $\ell \geq 5$, and let $j\geq 1$ and let $p \in \{2, 3, 5 \}$. In this paper, we prove that the generating function for $p_{[1, p]}(n)$ in the progression $\beta_{p, \ell, j}$ modulo $\ell^j$ with $24\beta_{p, \ell, j} \equiv p + 1\pmod{\ell^j}$ lies in a Hecke-invariant subspace of type $\{\eta(Dz)\eta(Dpz)F(Dz) : F(z) \in M_{s}(\Gamma_0(p), \chi)\}$ for suitable $D\geq 1$, $s\geq 0$, and character $\chi$. When $p\in \{2, 3, 5\}$, we use the Hecke-invariance of these subspaces to prove, for distinct primes $\ell$ and $m\geq 5$ and $j\geq 1$, congruences of the form \[ p_{[1, p]}\left(\frac{\ell^jm^k n + 1}{D}\right)\equiv 0\pmod{\ell^j} \] for all $n\geq 1$ with $m\nmid n$, where $k$ is an explicitly computable constant depending on the modular forms in the invariant subspace. Our proofs requires adapting and extending analogous results on $p(n)$ in [1] and [19]. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |