Three term rational function progressions in finite fields
Autor: | Hong, Guo-Dong, Lim, Zi Li |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $F(t),G(t)\in \mathbb{Q}(t)$ be rational functions such that $F(t),G(t)$ and the constant function $1$ are linearly independent over $\mathbb{Q}$, we prove an asymptotic formula for the number of the three term rational function progressions of the form $x,x+F(y),x+G(y)$ in subsets of $\mathbb{F}_p$. The main new ingredient is an algebraic geometry version of PET induction that bypasses Weyl's differencing. This answers a question of Bourgain and Chang. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |