REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback

Autor: Chakraborty, Souradip, Singh, Anukriti, Bhaskar, Amisha, Tokekar, Pratap, Manocha, Dinesh, Bedi, Amrit Singh
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: The effectiveness of reinforcement learning (RL) agents in continuous control robotics tasks is heavily dependent on the design of the underlying reward function. However, a misalignment between the reward function and user intentions, values, or social norms can be catastrophic in the real world. Current methods to mitigate this misalignment work by learning reward functions from human preferences; however, they inadvertently introduce a risk of reward overoptimization. In this work, we address this challenge by advocating for the adoption of regularized reward functions that more accurately mirror the intended behaviors. We propose a novel concept of reward regularization within the robotic RLHF (RL from Human Feedback) framework, which we refer to as \emph{agent preferences}. Our approach uniquely incorporates not just human feedback in the form of preferences but also considers the preferences of the RL agent itself during the reward function learning process. This dual consideration significantly mitigates the issue of reward function overoptimization in RL. We provide a theoretical justification for the proposed approach by formulating the robotic RLHF problem as a bilevel optimization problem. We demonstrate the efficiency of our algorithm {\ours} in several continuous control benchmarks including DeepMind Control Suite \cite{tassa2018deepmind} and MetaWorld \cite{yu2021metaworld} and high dimensional visual environments, with an improvement of more than 70\% in sample efficiency in comparison to current SOTA baselines. This showcases our approach's effectiveness in aligning reward functions with true behavioral intentions, setting a new benchmark in the field.
Databáze: arXiv