Classification of connected \'etale algebras in modular fusion categories up to rank five
Autor: | Kikuchi, Ken |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We classify connected \'etale algebras in (possibly non-unitary) modular fusion categories $\mathcal B$'s with $\text{rank}(\mathcal B)\le5$. We also comment on Lagrangian algebra, anyon condensation, and physical applications. Concretely, we prove certain spontaneous $\mathcal B$-symmetry breaking and predict ground state degeneracies in massive renormalization group flows from non-unitary minimal models. Comment: 32 pages + references; v2: minor corrections on Toric Code, fixed typos; v3: minor corrections on $psu(2)_9$, and added a theorem in section 3.1 proving modular fusion categories $\mathcal B$'s with $\text{rank}(\mathcal B)>1$ are spontaneously broken; v4: minor corrections on $\text{Vec}_{\mathbb Z/2\mathbb Z\times\mathbb Z/2\mathbb Z}$; v5:corrected method and typos |
Databáze: | arXiv |
Externí odkaz: |