Spectrality in convex sequential effect algebras

Autor: Jenčová, Anna, Pulmannová, Sylvia
Rok vydání: 2023
Předmět:
Zdroj: Int J Theor Phys 62, 193 (2023)
Druh dokumentu: Working Paper
DOI: 10.1007/s10773-023-05431-8
Popis: For convex and sequential effect algebras, we study spectrality in the sense of Foulis. We show that under additional conditions (strong archimedeanity, closedness in norm and a certain monotonicity property of the sequential product), such effect algebra is spectral if and only if every maximal commutative subalgebra is monotone $\sigma$-complete. Two previous results on existence of spectral resolutions in this setting are shown to require stronger assumptions.
Comment: 18 pages. arXiv admin note: text overlap with arXiv:2111.02166
Databáze: arXiv
Nepřihlášeným uživatelům se plný text nezobrazuje