Beurling-Deny formula for Sobolev-Bregman forms
Autor: | Gutowski, Michał, Kwaśnicki, Mateusz |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Sobolev-Bregman forms, or $p$-forms, describe Markovian semigroups on $L^p$, and they reduce to Dirichlet forms when $p = 2$. We prove a variant of the Beurling-Deny formula for Sobolev-Bregman forms which correspond to an arbitrary regular Dirichlet form. As a sample application, we prove the corresponding Hardy-Stein identity. Our results require no further conditions on the Dirichlet form or the associated Markovian semigroup. Comment: 22 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |