A suitable nonlinear Stratonovich noise prevents blow-up in the Euler equations and other SPDEs
Autor: | Bagnara, Marco |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We perturb the 3D Euler equations by a particular non-linear Stratonovich noise. We show the existence and uniqueness of a global-in-time (i.e. no blow-up) smooth solution. The result is a corollary of a more general theorem valid in an abstract framework, where the addition of such noise prevents the blow-up possibly induced by a drift with super-linear growth. The result is new with Stratonovich noise. Comment: Improved result; corrected typos |
Databáze: | arXiv |
Externí odkaz: |