Silent Guardian: Protecting Text from Malicious Exploitation by Large Language Models

Autor: Zhao, Jiawei, Chen, Kejiang, Yuan, Xiaojian, Qi, Yuang, Zhang, Weiming, Yu, Nenghai
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1109/TIFS.2024.3455775
Popis: The rapid development of large language models (LLMs) has yielded impressive success in various downstream tasks. However, the vast potential and remarkable capabilities of LLMs also raise new security and privacy concerns if they are exploited for nefarious purposes due to their open-endedness. For example, LLMs may be used to plagiarize or imitate writing, thereby infringing the copyright of the original content, or to create indiscriminate fake information based on a certain source text. In some cases, LLMs can even analyze text from the Internet to infer personal privacy. Unfortunately, previous text protection research could not foresee the emergence of powerful LLMs, rendering it no longer effective in this new context. To bridge this gap, we introduce Silent Guardian (SG), a text protection mechanism against LLMs, which allows LLMs to refuse to generate response when receiving protected text, preventing the malicious use of text from the source. Specifically, we first propose the concept of Truncation Protection Examples (TPE). By carefully modifying the text to be protected, TPE can induce LLMs to first sample the end token, thus directly terminating the interaction. In addition, to efficiently construct TPE in the discrete space of text data, we propose a novel optimization algorithm called Super Tailored Protection (STP), which is not only highly efficient but also maintains the semantic consistency of the text during the optimization process. The comprehensive experimental evaluation demonstrates that SG can effectively protect the target text under various configurations and achieve almost 100% protection success rate in some cases. Notably, SG also exhibits relatively good transferability and robustness, making its application in practical scenarios possible. Our code is available at https://github.com/weiyezhimeng/Silent-Guardian.
Comment: This paper was accepted by IEEE Transactions on Information Forensics and Security (TIFS)
Databáze: arXiv