On the symmetric $q$-analog on the bi-univalent functions with respect to symmetric points
Autor: | Long, Pinhong, Han, Huili, Orhan, Halit, Tang, Huo |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Our objective is to usher and investigate the subclass$\widetilde{\mathcal{S^{*}_{\sum}}}^{\eta}_{q}(\mu,\lambda;\phi)$ of the function class $\sum$ of analytic and bi-univalent functions related with the symmetric $q$-derivative operator and the generalized Bernardi integral operator. On the one hand, without the generalized Bernardi integral operator we estimate the second Hankel determinants for the reduced subclasses $\widetilde{\mathcal{S^{*}_{\sum}}}_{q}(\lambda;\phi)$ with respect to symmetric points. On the other hand, we also give the corresponding results of Fekete-Szeg\"{o} functional inequalities and the upper bounds of the coefficients $a_2$ and $a_3$ for these subclasses. Comment: 19 pages |
Databáze: | arXiv |
Externí odkaz: |