Autor: |
Nuggehalli, Shyam, Zhang, Jifan, Jain, Lalit, Nowak, Robert |
Rok vydání: |
2023 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Class imbalance is a prevalent issue in real world machine learning applications, often leading to poor performance in rare and minority classes. With an abundance of wild unlabeled data, active learning is perhaps the most effective technique in solving the problem at its root -- collecting a more balanced and informative set of labeled examples during annotation. Label noise is another common issue in data annotation jobs, which is especially challenging for active learning methods. In this work, we conduct the first study of active learning under both class imbalance and label noise. We propose a novel algorithm that robustly identifies the class separation threshold and annotates the most uncertain examples that are closest from it. Through a novel reduction to one-dimensional active learning, our algorithm DIRECT is able to leverage the classic active learning literature to address issues such as batch labeling and tolerance towards label noise. We present extensive experiments on imbalanced datasets with and without label noise. Our results demonstrate that DIRECT can save more than 60% of the annotation budget compared to state-of-art active learning algorithms and more than 80% of annotation budget compared to random sampling. |
Databáze: |
arXiv |
Externí odkaz: |
|