Popis: |
Zonal flows are mean flows in the east-west direction, which are ubiquitous on planets, and can be formed through 'zonostrophic instability': within turbulence or random waves, a weak large-scale zonal flow can grow exponentially to become prominent. In this paper, we study the statistical behaviour of the zonostrophic instability and the effect of magnetic fields. We use a stochastic white noise forcing to drive random waves, and study the growth of a mean flow in this random system. The dispersion relation for the growth rate of the expectation of the mean flow is derived, and properties of the instability are discussed. In the limits of weak and strong magnetic diffusivity, the dispersion relation reduces to manageable expressions, which provide clear insights into the effect of the magnetic field and scaling laws for the threshold of instability. The magnetic field mainly plays a stabilising role and thus impedes the formation of the zonal flow, but under certain conditions it can also have destabilising effects. Numerical simulation of the stochastic flow is performed to confirm the theory. Results indicate that the magnetic field can significantly increase the randomness of the zonal flow. It is found that the zonal flow of an individual realisation may behave very differently from the expectation. For weak magnetic diffusivity and moderate magnetic field strengths, this leads to considerable variation of the outcome, that is whether zonostrophic instability takes place or not in individual realisations. |