Minimal free resolution of generalized repunit algebras

Autor: Colaço, Isabel, Ojeda, Ignacio
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1080/00927872.2024.2394968
Popis: Let $\Bbbk$ be an arbitrary field and let $b > 1, n > 1$ and $a$ be three positive integers. In this paper we explicitly describe a minimal $S-$graded free resolution of the semigroup algebra $\Bbbk[S]$ when $S$ is a generalized repunit numerical semigroup, that is, when $S$ is the submonoid of $\mathbb{N}$ generated by $\{a_1, a_2, \ldots, a_n\}$ where $a_1 = \sum_{j=0}^{n-1} b^j$ and $a_i - a_{i-1} = a\, b^{i-2},\ i = 2, \ldots, n$, with $\gcd(a,a_1) = 1$.
Comment: 9 pages. To appear in Communications in Algebra
Databáze: arXiv