M\'obius function and primes: an identity factory with applications
Autor: | Ramaré, Olivier, Alterman, Sebastian Zuniga |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the sums $\sum_{n\le X, (n,q)=1}\frac{\mu(n)}{n^s}\log^k\left(\frac{X}{n}\right)$, where $k\in\{0,1\}$, $s\in\mathbb{C}$, $\Re s>0$ and give asymptotic estimations in an explicit manner. In order to do so, we produce a large family of arithmetical identities and derive several applications. Along similar ideas, we present an appendix showing the inequality $\sum_{n\le X}\Lambda(n)/n\le \log X$, valid for any $X\geq 1$. Comment: Updated |
Databáze: | arXiv |
Externí odkaz: |