Theoretical Bounds for Noise Filtration using Low-Rank Tensor Approximations
Autor: | Petrov, Sergey, Zamarashkin, Nikolai |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Low-rank tensor approximation error bounds are proposed for the case of noisy input data that depend on low-rank representation type, rank and the dimensionality of the tensor. The bounds show that high-dimensional low-rank structured approximations provide superior noise-filtering properties compared to matrices with the same rank and total element count. |
Databáze: | arXiv |
Externí odkaz: |