Scalar curvature and volume entropy of hyperbolic 3-manifolds

Autor: Kazaras, Demetre, Song, Antoine, Xu, Kai
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: We show that any closed hyperbolic 3-manifold M admits a Riemannian metric with scalar curvature at least -6, but with volume entropy strictly larger than 2. In particular, this construction gives counterexamples to a conjecture of I. Agol, P. Storm and W. Thurston.
Comment: v2 update: statements strengthened, proofs simplified, references added. 14 pages, 2 figures. Comments welcome!
Databáze: arXiv