Scalar curvature and volume entropy of hyperbolic 3-manifolds
Autor: | Kazaras, Demetre, Song, Antoine, Xu, Kai |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that any closed hyperbolic 3-manifold M admits a Riemannian metric with scalar curvature at least -6, but with volume entropy strictly larger than 2. In particular, this construction gives counterexamples to a conjecture of I. Agol, P. Storm and W. Thurston. Comment: v2 update: statements strengthened, proofs simplified, references added. 14 pages, 2 figures. Comments welcome! |
Databáze: | arXiv |
Externí odkaz: |