A quasi-polynomial time algorithm for Multi-Dimensional Scaling via LP hierarchies
Autor: | Bakshi, Ainesh, Cohen-Addad, Vincent, Hopkins, Samuel B., Jayaram, Rajesh, Lattanzi, Silvio |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Multi-dimensional Scaling (MDS) is a family of methods for embedding an $n$-point metric into low-dimensional Euclidean space. We study the Kamada-Kawai formulation of MDS: given a set of non-negative dissimilarities $\{d_{i,j}\}_{i , j \in [n]}$ over $n$ points, the goal is to find an embedding $\{x_1,\dots,x_n\} \in \mathbb{R}^k$ that minimizes \[\text{OPT} = \min_{x} \mathbb{E}_{i,j \in [n]} \left[ \left(1-\frac{\|x_i - x_j\|}{d_{i,j}}\right)^2 \right] \] Kamada-Kawai provides a more relaxed measure of the quality of a low-dimensional metric embedding than the traditional bi-Lipschitz-ness measure studied in theoretical computer science; this is advantageous because strong hardness-of-approximation results are known for the latter, Kamada-Kawai admits nontrivial approximation algorithms. Despite its popularity, our theoretical understanding of MDS is limited. Recently, Demaine, Hesterberg, Koehler, Lynch, and Urschel (arXiv:2109.11505) gave the first approximation algorithm with provable guarantees for Kamada-Kawai in the constant-$k$ regime, with cost $\text{OPT} +\epsilon$ in $n^2 2^{\text{poly}(\Delta/\epsilon)}$ time, where $\Delta$ is the aspect ratio of the input. In this work, we give the first approximation algorithm for MDS with quasi-polynomial dependency on $\Delta$: we achieve a solution with cost $\tilde{O}(\log \Delta)\text{OPT}^{\Omega(1)}+\epsilon$ in time $n^{O(1)}2^{\text{poly}(\log(\Delta)/\epsilon)}$. Our approach is based on a novel analysis of a conditioning-based rounding scheme for the Sherali-Adams LP Hierarchy. Crucially, our analysis exploits the geometry of low-dimensional Euclidean space, allowing us to avoid an exponential dependence on the aspect ratio. We believe our geometry-aware treatment of the Sherali-Adams Hierarchy is an important step towards developing general-purpose techniques for efficient metric optimization algorithms. Comment: Extended exposition |
Databáze: | arXiv |
Externí odkaz: |