Nisnevich equivalences of local essentially smooth open pairs
Autor: | Druzhinin, A. E., Urzabaev, A. A. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this note, we prove a Nisnevich local equivalence \begin{equation*} X/(X-Z)\simeq X^\prime/(X^\prime-Z^\prime) \end{equation*} for essentially smooth local schemes $X$ and $X^\prime$ of the same dimension over a base scheme $B$, and arbitrary isomorphic closed subschemes $Z$ and $Z^\prime$, with immediate applications in motivic homotopy theory. Comment: 7 pages. The main result (Theorem A) in the new version was Theorem 2.11 in the old version |
Databáze: | arXiv |
Externí odkaz: |