On the existence of critical compatible metrics on contact $3$-manifolds
Autor: | Mitsumatsu, Yoshihiko, Peralta-Salas, Daniel, Slobodeanu, Radu |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We disprove the generalized Chern-Hamilton conjecture on the existence of critical compatible metrics on contact $3$-manifolds. More precisely, we show that a contact $3$-manifold $(M,\alpha)$ admits a critical compatible metric for the Chern-Hamilton energy functional if and only if it is Sasakian or its associated Reeb flow is $C^\infty$-conjugate to an algebraic Anosov flow modeled on $\widetilde{SL}(2, \mathbb R)$. In particular, this yields a complete topological classification of compact $3$-manifolds that admit critical compatible metrics. As a corollary we prove that no contact structure on $\mathbb{T}^3$ admits a critical compatible metric and that critical compatible metrics can only occur when the contact structure is tight. Comment: 12 pages; new section 3.3 about global minima of the energy |
Databáze: | arXiv |
Externí odkaz: |