Trigonometric polynomials with frequencies in the set of cubes
Autor: | Gabdullin, Mikhail R., Konyagin, Sergei V. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that for any $\epsilon>0$ and any trigonometric polynomial $f$ with frequencies in the set $\{n^3: N \leq n\leq N+N^{2/3-\epsilon}\}$, one has $$ \|f\|_4 \ll \epsilon^{-1/4}\|f\|_2 $$ with implied constant being absolute. We also show that the set $\{n^3: N\leq n\leq N+(0.5N)^{1/2}\}$ is a Sidon set. Comment: 6 pages; inaccuracy in the proof of the main theorem is corrected |
Databáze: | arXiv |
Externí odkaz: |