The finite type of modules of bounded projective dimension and Serre's conditions
Autor: | Hrbek, Michal, Gros, Giovanna Le |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $R$ be a commutative noetherian ring. We prove that the class of modules of projective dimension bounded by $k$ is of finite type if and only if $R$ satisfies Serre's condition $(S_k)$. In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the $k$-dimensional version of the Govorov-Lazard Theorem holds if and only if $R$ satisfies the "almost" Serre condition $(C_{k+1})$. |
Databáze: | arXiv |
Externí odkaz: |