Knot data analysis using multiscale Gauss link integral

Autor: Shen, Li, Feng, Hongsong, Li, Fengling, Lei, Fengchun, Wu, Jie, Wei, Guo-Wei
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: In the past decade, topological data analysis (TDA) has emerged as a powerful approach in data science. The main technique in TDA is persistent homology, which tracks topological invariants over the filtration of point cloud data using algebraic topology. Although knot theory and related subjects are a focus of study in mathematics, their success in practical applications is quite limited due to the lack of localization and quantization. We address these challenges by introducing knot data analysis (KDA), a new paradigm that incorporating curve segmentation and multiscale analysis into the Gauss link integral. The resulting multiscale Gauss link integral (mGLI) recovers the global topological properties of knots and links at an appropriate scale but offers multiscale feature vectors to capture the local structures and connectivities of each curve segment at various scales. The proposed mGLI significantly outperforms other state-of-the-art methods in benchmark protein flexibility analysis, including earlier persistent homology-based methods. Our approach enables the integration of artificial intelligence (AI) and KDA for general curve-like objects and data.
Databáze: arXiv