Non-linear (3, 4, 1) multiplet of ${\cal N} = 4$, $d = 1$ supersymmetry as a semi-dynamical spin multiplet

Autor: Ivanov, Evgeny, Sidorov, Stepan
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: We consider a new type of ${\cal N}=4$, $d=1$ semi-dynamical multiplet based on the non-linear version of the mirror multiplet ${\bf (3, 4, 1)}$, with the triplet of bosonic physical fields parametrizing a three-dimensional sphere $S^3$ of the radius $R$. The limit $R\to\infty$ amounts to the contraction $S^3\to\mathbb{R}^3$ and leads to the linear mirror multiplet ${\bf (3, 4, 1)}$. Spin degrees of freedom described by a Wess-Zumino action specify a two-dimensional surface embedded in the sphere $S^3$. A pair of the examples considered correspond to the round and squashed ``fuzzy'' 2-spheres. We couple the squashed 2-sphere model to the dynamical mirror multiplet ${\bf (2, 4, 2)}$. A notable feature of this coupling is the dependence of the squashing parameter on the bosonic fields $z, \bar z$ of the chiral multiplet.
Comment: 1+17 pages
Databáze: arXiv