Autor: |
Majdinasab, Vahid, Bishop, Michael Joshua, Rasheed, Shawn, Moradidakhel, Arghavan, Tahir, Amjed, Khomh, Foutse |
Rok vydání: |
2023 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
AI-powered code generation models have been developing rapidly, allowing developers to expedite code generation and thus improve their productivity. These models are trained on large corpora of code (primarily sourced from public repositories), which may contain bugs and vulnerabilities. Several concerns have been raised about the security of the code generated by these models. Recent studies have investigated security issues in AI-powered code generation tools such as GitHub Copilot and Amazon CodeWhisperer, revealing several security weaknesses in the code generated by these tools. As these tools evolve, it is expected that they will improve their security protocols to prevent the suggestion of insecure code to developers. This paper replicates the study of Pearce et al., which investigated security weaknesses in Copilot and uncovered several weaknesses in the code suggested by Copilot across diverse scenarios and languages (Python, C and Verilog). Our replication examines Copilot security weaknesses using newer versions of Copilot and CodeQL (the security analysis framework). The replication focused on the presence of security vulnerabilities in Python code. Our results indicate that, even with the improvements in newer versions of Copilot, the percentage of vulnerable code suggestions has reduced from 36.54% to 27.25%. Nonetheless, it remains evident that the model still suggests insecure code. |
Databáze: |
arXiv |
Externí odkaz: |
|